
www.manaraa.com

Conformance of Distributed Systems

Maximilian Frey 1, Bernd-Holger Schlingloff 2, 3

1 O2 (Germany) GmbH & Co. OHG, Georg-Brauchle-Ring 23-25,
80992 Munich, Germany

Maximilian.Frey@o2.com
2 Humboldt-Universität zu Berlin, Institut für Informatik,

Rudower Chaussee 25, 12489 Berlin
3 Fraunhofer Institut für Rechnerarchitektur und Softwaretechnik FIRST,

Kekuléstr. 7, 12489 Berlin
Holger.Schlingloff@FIRST.FhG.DE

Abstract. This paper introduces a new conformance relation between a specifi-
cation and an implementation of a distributed system. It is based on a local
view which allows to avoid or reduce the state explosion problem. The confor-
mance relation is defined via Petri nets and shows not only equivalence be-
tween transitions but also equivalence between local states. This equivalence
depends on the structural properties of the Petri net and is independent of any
specific initial marking. We compare our notion of conformance to classical
ones and give model checking and test case generation algorithms for it.

1 Introduction

When testing telecommunication systems the testing devices, implementations and
specifications usually are distributed systems. Testing of telecommunication systems
means testing at different layers. Layer 1 or layer 2 according to the ISO reference
model can be tested with purely sequential models, since there is only one end node.
When testing higher layers (for example layer 3 or the network layer), at least the
testing architecture is distributed.

Here is a short example in mobile communication to demonstrate this point. One
specific interface within mobile GSM networks is the A-interface [GSM03.02]. This
interface is positioned between the access network (also called BSS) and the core
network. In order to test the correct implementation of an MSC (core network
switch), the A-interface is of utmost importance, since all calls of the mobile custom-
ers are handled by that interface. A typical scenario is depicted in Figure 1 on the
following page. Layer 2 of the A-interface is implemented by the SCCP (see refer-
ence [SCCP]) which is an SS7 protocol. The MSC is an end node for the SSCP;
therefore, distributed testing is not necessary. It is sufficient to use a single point of
control and observation (PCO). Layer 3 of the A-interface contains the call control
protocol [GSM04.08].

www.manaraa.com

MSC BSC

MSC

D-Intf.

E-Intf.

A-Intf. A-Intf.

HLR

BSC

Fig. 1. Interfaces of the MSC

For testing the Call Control (CC) at least two different parties, the calling and the
called party, are necessary. If the interfaces for the parties are different we have a
protocol interworking scenario. For example interworking occurs between mobility
management (MM) and MAP [MAP] at the D-interface or between CC and the ISUP
[ISUP] on the E-interface. In that case the implementation is usually assumed to be a
black box.
Extending the interworking from one node of the network to subnetworks like the
access network or the core network, interworking between different nodes and a dis-
tributed implementation occurs. If new nodes or new versions of software are intro-
duced in the network, integration tests in a distributed implementation must be per-
formed. In that case the implementation can not be modelled as a black box, since the
interfaces between the different nodes are traceable.

Distributed testing environments for telecommunication systems have been intro-
duced some time ago. In TTCN-2 [TTCN-2] distributed testing components can be
statically generated. Additionally, in TTCN-3 [TTCN-3] dynamic generation of dis-
tributed testing components is introduced. In [1999_GSBWL] a concept for a distrib-
uted testing environment based on TTCN and CORBA has been proposed.

Often, the specification of a telecommunication system refers to distributed parts. For
example, the specifications of the Mobile Application Part Protocol [MAP], the DSS1
Protocol [DSS1] or the ISUP Protocol [ISUP2] contain SDL-specifications. A speci-
fication in SDL [SDL] consists of processes communicating via unbounded queues.
The protocol specifications are divided into one protocol machine for incoming and
one for outgoing calls. Furthermore, there is a supervision process which specifies
how the different protocol machines are interacting. Each protocol machine has an
external queue and at least one queue shared with the supervision process. Most of
the layer-3 protocol specifications such as DSS1 or GSM/UMTS CC contain mes-
sages which have only local meaning as well as messages which also have global
meaning. For example, a call proceeding message has only local meaning to the pro-
tocol machine, while a setup message has global meaning and is transferred to the
supervision process.

www.manaraa.com

Thus, there are causal independent events like the sending of a call processing mes-
sage as local answer to a setup message and the global sending of the setup message
through the network.
Especially in testing of telecommunication applications it is necessary to deal with
distributed systems. Most existing methods for generating tests for communicating
systems use finite state machines (see for example [Yao Petrenko Bochmann 1993],
[Anido Cavalli 95] [Lee Yannakakis 1996]). This modelling formalism has the disad-
vantage that it does not differentiate between nondeterminism and parallelism.

Definition 1: A finite state machine (FSM) M is a quintuple M=(I,O,S,δ,λ) where
I,O, and S are finite and nonempty sets of input symbols, output symbols, and states,
resp. δ: S × I → S is the transition function and λ: S × I → O is the output function.

In validation methods based on FSMs, distribution and parallelism is handled by
building the cartesian product, i.e., by generating global states. This leads to a state
explosion problem. To define some kind of test coverage, FSM based methods often
define a conformance relation between FSMs. Applying these methods to distributed
systems, often a huge amount of similar test cases is generated, where many individ-
ual test cases represent just different interleavings of the same distributed testing
scenario. The cause for these unnecessary interleavings is in the state explosion which
occurs by generating global from sets of local states. The generation of global states
leads to two sorts of high complexity: Firstly, by the generation of global states from
sets of local states, and secondly, by the derivation of distributed test scenario from
the various generated sequences (see [Petrenko Ulrich Chapenko 1998].

Some authors propose to use distributed test case generation. Mostly, the proposed
methods define a distributed transition tour through the system (see, e.g., [Ulrich
König 1999] [Jard 2001] [Kim Shin Janson Kang 1999], and others). Compared to
the methods for FSMs, transition tour methods are not able to test the conformance of
FSMs, because they do not test the equivalence of states (see [Ramalingam Das Thu-
lasiraman 95].
To define methods which are effective for distributed systems and test more than
transition tours, a specification of conformance for distributed models is necessary. A
well known model for distribution and parallelism are Petri nets. To model communi-
cation, we introduce an extension of Petri nets to include input and output symbols. A
a new notion of correctness, we define a conformance relation between these nets.
This relation can be used for model checking and testing purposes. Since our confor-
mance relation is entirely based on local states, we avoid both of the drawbacks men-
tioned above.

Our paper is organized as follows. In Section 2, we give some basic definitions. Then,
in Section 3 we define executions, simulations and conformance on these extended
models. In Section 4 we compare the conformance relation on extended Petri nets to
the conformance relation on FSMs. In Section 5 we sketch how conformance can be
verified by model checking, and how tests can be automatically generated from Petri
net specifications. Finally we give some conclusions and hints for further work.

www.manaraa.com

2 Modelling of Distributed Systems

In order to model a subset of a telecommunication network, we have to model differ-
ent nodes. Thus, the system under test (SUT) is the network. For the observation of
this SUT, ports are used. They allow to observe the message flow on the external
interfaces between the nodes.
For testing purposes, we distinguish between two kinds of ports.

• Ports which are points of control and observation (PCOs). The testing envi-
ronment is applying input symbols to the SUT and receiving output symbols
from the SUT.

• Ports which are points of observation (POs). These ports are in between two
components of the SUT for internal communication. The input symbols of one
component are the output symbols of the other component. The testing envi-
ronment can only observe these input/output symbols.

Node 1

Node 2

Node 3

PO 3

PO 1

PO 2

PCO A PCO B

Fig. 2. Distributed system with PCOs and POs

Figure 2 shows an example for a distributed system with PCOs and POs. The system
described contains three nodes. In a GSM system, PCO A and PCO B are PCOs on
the CC protocol of an A-interface, Node1 and Node3 are MSCs and Node 2 is an
HLR. PO 2 and PO 3 are POs on the MAP-Protocol of a C-interface.

Subsequently, we model distributes systems as the one above by Petri nets (cf. e.g.

[Reisig 88]). The testing environment can send input symbols to the SUT only at
PCOs. Therefore, Petri nets are extended with a set of input symbols and a set of
output symbols. Similar to a transition in an FSM an event of a Petri Net receives an
input symbol from the environment and generates an output symbol to the environ-
ment. In order to specify the input and output symbol for an event, two functions are
added to the usual definition of a Petri Net.

Furthermode, PCOs and POs are modelled by sets of input and output symbols
which occur at the specified port. Thus, the Petri net formalism additionally is ex-
tended by a set of PCOs and a set of POs. As a special case, the set of POs can be
empty if the SUT consists of only one node.

Communication between different nodes is asynchronous, as within most tele-
communication protocols. For any event e which has an output symbol of an PO there
must exists a succecessor event e’ such that the output symbol of e is the input sym-
bol of e’. An internal communication via a PO has taken place. Between both events

www.manaraa.com

is exactly one condition. It is not possible that a further event is between both, be-
cause that event would be an internal event which is not visible to any PO and PCO.

ent. Similar to the FSM model, we
req ire that all of our Petri nets are deterministic.

B,E,R,I,O,PCO,PO,ι,ο), where

• (E×B) is the flow relation, where x•={y | (x,y) ∈ R} and •x ={y |
 ∈ }

•

In the same way each output and input event of one PO are connected.
Local (and also global) states of a extended Petri Net are stable, which means that
they can only be left by an input from the environm

u

Definition 2: A extended Petri net P is a tuple P=(
• B is a finite and nonempty set of conditions,
• E is a finite and nonempty set of events, (B∩E=∅)

R ⊆ (B×E) ∪
(y,x) R

• I is a finite set of input symbols,
• O is a nonempty, finite set of output symbols,

PCO is a set of ports which are points of control and observation, i.e., a set of
tuples (Ii, Oi) such that Ii ⊆ I \ O and Oi ⊆ O \ I. PO is a set of ports which are
points of observation, i.e., a set of sets (Oi) such that Oi ⊆ Ι ∩ O.

•
that o ∈ Oi.

• ere exists a condition b and an event e’

ere exists a condition b and an event e’
• • ο

• ι: E→ I is the input function,
• ο: E→ O is the output function,

For each i ∈ Ι \ O there is exactly one PCO (Ii, Oi) such that i ∈ Ιi.
For each o ∈ O \ I there is exactly one PCO (Ii, Oi) such
For each o ∈ Ι ∩ O there is exactly one PO (Oi) such that o ∈ Oi.
For any event e such that ο(e) ∈ Ι ∩ O th
such that •b = e, b• = e’, and ι(e’)= ο(e).
For any event e such that ι(e) ∈ Ι ∩ O th
such that b = e, b = e’, and ι(e)= (e’).

• P is loop-free: ∀ x∈ B ∪ E (x•∩•

 P is deterministic: ∀ b∈ B ∀ e,e’∈ b• (e≠e’ → ι(e) ≠ ι(e’))

 only; conceptu-
lly, the subsequent theory could also be based on one sort of ports.

∨ c[+〉c’. A net is one-safe
om c iff ∀ c’⊆ B ∀e∈E (c[*〉c’ ∧ •e ⊆ c’ → e•∩ c’=∅).

etri net P=(B,E,R,I,O,PCO,PO,ι,ο) is strongly connected
if x,x’∈ E∪B: (x,x’)∈R*.

x =∅)
•

The distinction between PCOs and POs is for application purposes
a

Definition 3:
A marking of an extended Petri net P=(B,E,R,I,O,PCO,PO,ι,ο) is any subset of B.
Marking c’ is obtained from c by firing event e (c[e〉c’) if (•e ⊆ c ∧ c’ = (c- •e) ∪ e•).
Marking c’ is reachable from marking c (c[+〉c’), if ∃e1, e2, ... ,en∈E ∃ c1, ... ,cn-1 ⊆ B
(c[e1〉c1 ∧ c1[e2〉c2 ∧ ... ∧ cn-1[en〉c’). We write c[*〉c’ if c=c’
fr

Definition 4: An extended P

∀

www.manaraa.com

Thus, an extended Petri net is strongly connected if all conditions and events are
mutually reachable. We use nets to model reactive systems which are cyclic. More-
ov

n of an ex-
ten

een nets independent of the actual
sta

and each side of an PO a sequential,
strongly connected component net would have to exist. However, such a restriction is
not necessary for our subsequent considerations.

e inital state of an
SM is a state verification problem. If the implementation is considered as a black

Def

(s2, i2), ... , λ(sn, in).

ing at s’ generate the same output sequences.
• o

(1) For each state s in M there is a state s’ in M’ such that s is equivalent to s’,

tions of extended Petri Nets by sequences, but by causal nets

er, the communication at POs between nodes is in both directions. Therefore, all of
our specifications are strongly connected.

The property of being strongly connected is not part of our definitio
ded Petri net. This is because we model the execution of Petri Nets by an unfold-

ing of this net, which again is a net. Obviously an unfolding is not cyclic.
Also, the notion of initial marking is not part of our definition of a net. This is be-

cause we are aiming at a structural morphism betw
rting state. Each subnet is supposed to model a separate process, executing con-

tinuously and synchronizing by message passing.
Extended Petri nets can be used to model much more general systems than the tele-

communication networks described above. To be closer to these, Petri nets would
have to be built from components. For each PCO

3 Conformance of Extended Petri Nets

To define a conformance relation on extended Petri Nets, we reconsider the confor-
mance relation on FSMs. The execution of an FSM is a sequence of transitions ob-
servable by an input and output symbol each. Since our FSMs are deterministic, for
any initial state and sequence of input signals exactly one execution of the FSM can
be observed by the according sequence of output signals. The usual conformance
relation between FSMs is a relation between states which means that not only the
same transitions and transition paths must exist in two conforming FSMs but also the
corresponding states are equivalent. To check whether a state is th
F
box, this can not be determined by testing [Lee Yannakakis 1996].

inition 5: Let M’=(I,O,S’,δ’,λ’) and M=(I,O,S,δ,λ) be two FSMs.
• For an initial state s1 an input sequence i1, i2 , ... , in takes the FSM to states

si+1=δ(si, ii) and generates a output sequence λ(s1, i1), λ
• A state s∈S is equivalent to a state s’∈S if all input sequences M starting at s and

M’ start
Assume that M models an implementation and M’ a specification. M conforms t
M’, if

(2) For each state s’ in M’ there is a state s in M such that s is equivalent to s’

Often, only part (1) or part (2) of the third condition is used, yielding a refinement
relation. For FSMs, requiring (1) and (2) amounts to isomorphism of the correspond-
ing minimal machines. This does not hold for more general computational models.
We do not model execu

www.manaraa.com

which preserve the partial ordering of causality in the original net. Here, conformance
is more differentiating.
Definition 6: An extended causal net is an extended Petri net

ative we choose the minimal marking with respect to execution
of events. The respective marking for the condition b6 in figure 3 is indicated by a

ral PCOs, where input symbols can be supplied independently and

K=(BK,EK,RK,IK,OK,PCO K, PO K,ι K,οK) where ∀b∈BK((|b•| ≤1) ∧ (b,b) ∉RK
+).

When generating a transition system from a net, each reachable marking represents a
state. For a net with n conditions, there might be up to 2n reachable markings. This is
the so-called state explosion problem. We want to avoid the exponential blow-up by
generating executions which start with a single condition of the net. However, execu-
tions of a Petri net should not be deadlocking. Therefore, we let each execution start
at a marking which contains the chosen condition, plus some extra conditions which
are necessary to avoid deadlock. An example can be found in figure 3. Assume that
we want to generate an execution starting with condition b1. Then, we also have to
add condition b6 to the initial marking, because otherwise event e6 and all successor
events of it would never be enabled, and the net would deadlock at {b3, b4}. For each
condition in the net, there might be several markings containing it from which the net
is live. As a represent

dashed line.

b1

b2

e3

b3

b5

b6

b7

b4

b8

e1

e5e2

e6

e7

Now, we define the execution of a net on a given input. In FSMs, an execution is
determined by a sequence of input symbols supplied to the system. In extended Petri
nets, there are seve

Fig. 3. Example of a strongly connected Petri net

www.manaraa.com

in parallel. In order to model a distributed input for extended Petri nets, the following
rnatives exist: alte

• order on input symbols of different PCOs. The distributed sequence is

dditional causal relation
n the execution of the Petri net. The other choices would lead to additional causal

is an admissible input for the net
=(B,E,R, I,O,PCO,PO,ι,ο), where PCO contains n ports (Ii,Oi), if each seqi is a non-

,PO,ι,ο). Each execution starts
om a certain initial condition for one process. All nondeterministic choices for this

rking of P for the condition b, denoted by c(b), is a set of
onditions such that all events having b as precondition are enabled in c(b); i.e.,

Since we are aiming at a partial order model of program runs, we require that each

P. We say that K is an execution of P starting
 to SEQ (denoted by K∈[P,bI,SEQ〉) if a homomorphism h: K→ P and

 i g c(bI) exist such that

e)= •h(e)))
K

*∧ (b,b’) ∉ RK
*) → h(b) ≠ h(b’))

•
• , ... ∈I (•e1 ⊆ c(b) ∧ c1=(c(b)- •e1) ∪ e1

• ∧ ι(

• A single sequence of input symbols is used. Symbols of different PCOs are totally
ordered within this sequence.

• A partial order of input symbols is used, where input symbols of one PCO are
totally ordered. Input symbols of different PCOs can be ordered or independent.
There is no
represented by a set of sequences which contain a sequence of input symbols for
each PCO.

We use the last of these alternatives, because it implies no a
o
dependencies which are not covered in the specification net.

Definition 6: We say that SEQ={seq1,seq2,...,seqn}
P
empty and finite sequence of input symbols from Ii.

Let P be an extended Petri net P=(B,E,R, I,O,PCO
fr
process should be represented in the initial marking.

Definition 7: An initial ma
c
∀e∈E (e∈b• → •e⊆ c(b)).

execution of a net is a (contact-free) causal net.

Definition 8: Let P be an extended Petri net P=(B,E,R, I,O,PCO,PO,ι,ο), let bI∈B be
some condition from P, and let SEQ be an admissible input for P. Furthermore, let K
be an extended causal net K=(BK,EK,RK, I,O,PCO,PO,ι K,οK) with the same input and
output alphabets and PCOs and POs as
at bI according
an nitial markin
• h(BK)=B
• h(EK)=E
• ∀e∈EK ((h(e•)=h(e) •)∧ (h(•

• ∀b,b’∈BK (((b’,b) ∉ R
• ∀b∈BK- h(c(bI)) (|•b| =1)
• ∀b∈h(c(bI)) (|•b| =0).
• ∀e∈EK (h(ι K (e))= ι (h(e)))

∀e∈EK (h(ο K (e))= ο (h(e)))
(∃e1, e2, ... ∈E ∃c1, c2, ... ⊆ B ∃i1, i2

e1)= i1 ∧ •ei ⊆ ci-1 ∧ ci=(ci-1- •ei) ∪ ei
• ∧ ι(ei)= ii ∧ ∀seq∈SEQ (∃(I’,O’)∈ PCO

(∀ x∈seq (x∈ I’) ∧ i1, i2, ...|I’ =seq))

www.manaraa.com

Thus, the execution of an extended Petri net is a causal net which describes the
causal dependencies between conditions and events together with the input symbols
which have been consumed by the events and the output symbols which have been

enerated by the events. An algorithm to construct executions from nets is given in
Se

sm between the execution of the specification and the execution of the
im lementation is used. Also the input and output function is preserved by the homo-

ets with the same input and output
mentation I,

and
• xists such that

∈

 exists such that
∀ e,e’∈ EKs ∪BKs ((x, x’) ∈ RKs ↔ (h(x), h(x’)) ∈ RKi) ∧

 contains additional causal dependen-
cies, but no additional events. An example is given in figure 4, where the execution
(b) i

g
ction 5 below.

In the definition of conformance for FSMs the equivalence of states is based on the

equality of generated output sequences. For extended Petri nets, we model executions
by causal nets; thus, conformance will be based on a relation between causal nets. In
the following Definition 9, we propose two different alternatives. In both cases a
homomorphi

p
morphism.

Definition 9: Let Ki=(BKi,EKi,RKi,I,O,PCO,PO,ιKi,οKi) and Ks=(BKs,EKs,RKs,cKs
I,O,PCO,PO,ιKs,οKs) be two extended causal n
symbols and the same ports. Intuitively, Ki is an execution of some imple

 Ks is an execution of some specification S.
Ki is weakly simulating Ks if a mapping h: Ks Ki e
 ∀ x,x’∈ EKs∪BKs ((x, x’) ∈ RKs → (h(x), h(x’)) RKi) ∧

∀ e∈ EKs (οKs(e) = οKi(h(e)) ∧ ιKs(e) = ιKi(h(e)))
• Ki is strongly simulating Ks if a mapping h: EKs EKi

∀ e∈ EKs (οKs(e) = οKi(h(e)) ∧ ιKs(e) = ιKi(h(e)))

The difference between the weak and strong simulation relation is that the strong

simulation relation preserves the causal relation of the specification. The weak simu-
lation relation allows that the implementation

s weakly, but not strongly simulating (a).

b4

b

b

b5

b10

b9

b

e

b

e

e

b

b4

b

e

e

b

b5

b10

b9

b11 8

7

8

6

3

2

3

2

1

1

8

e7

e8

6

b3

e2

e3

b2

e1

b1

(a) (b)

Fig. 4. Run of the specification (a) and the implementation (b) for the same input sequences

www.manaraa.com

Conformance between implementation and specification is defined similar as for
FSMs. The conformance relation is based on (weak) simulation between conditions.

Definition 10:
Let I=(BI,EI,RI,I,O,PCO,PO,ιI,οI) and S=(BS,ES,RS,I,O,PCO,PO,ιS,οS) be strongly
connected extended Petri nets (the implementation and specification, respectively).
• We say that condition bI ∈ BI is (weakly) simulating condition bS ∈ BS if for all

admissible inputs SEQ and execution KI and KS such that KI∈[I,bI,SEQ〉,
KS∈[S,bS,SEQ〉 it holds that KI∈ is (weakly) simulating KS.

• I (weakly) conforms to S if
1. ∀ bS ∈ BS (∃ bI ∈ BI (bI is (weakly) simulating bS)), and
2. ∀ bI ∈ BI (∃ bS ∈ BS (bI is (weakly) simulating bS))

For functional correctness, it is necessary that an implementation has the same

causal dependencies as the specification. Otherwise the implementation could contain
a race condition, which is not allowed by the specification. This is an error which
occurs frequently in practical applications and is very difficult to detect. On the other
side, if an implementation execution has more dependencies than the corresponding
specification execution, this indicates that the degree of parallelism is reduced in the
implementation. This might cause a performance problem, but does not influence the
functional correctness. Whereas the specification and verification of performance is
beyond the scope of the present paper, additional dependencies in the implementation
leading to deadlock or similar errors can be found with our weak simulation relation.
In this case the I/O-behavior of the implementation would be different to the behavior
of the specification for at least one state and one set of input sequence. Thus, (weak)
simulation is sufficient for testing of correct functionality and is used in the above
definition.

4 Conformance in Distributed and Sequential Models

A conformance relation based on a distributed and parallel model has been introduced
above. In this section this relation is compared with the conformance relation on
FSMs in two ways. We ask the following questions:

1. Are both confomance relations equivalent for sequential systems?
2. Is the conformance relation on extended Petri nets equivalent to the confor-

mance relation on the global FSM of the Petri net?
For the first question we define a subclass of extended Petri nets, sequential Petri

nets which can describe sequential systems only. This class will be equivalent to
FSMs. Therefore the number of PCOs is one and no parallelism is generated.

Definition 11: An extended Petri Net P=(B,E,R,I,O,PCO,PO,ι,ο) is sequential, if ∀
e∈E (|•e|≤1 and |e•|≤ 1) and ∀ b∈B (|c(b)| ≤ 1) and |PCO|=1 and |PO|=0.

Theorem 1 shows that the class of sequential Petri nets is equivalent to FSMs.

www.manaraa.com

Theorem 1: Strongly connected sequential Petri Nets and strongly connected FSM
are equivalent.
Proof: Since |PCO|=1 and |PO|=0, we have PCO={(I,O)}. Since ∀ e∈E (|•e|≤1 and
|e•|≤ 1) and ∀ b∈B (|c(b)| ≤ 1), all events can be used to define relations λ and δ: ∀
e∈E ∀ b,b’∈B (((b,e) ∈R and (e,b’) ∈R) → (δ(b,ι(e))=b’∧ λ(b,ι(e))=ο(e))). This
way we have defined an FSM with (I,O,B,λ,δ).
Vice versa, from an FSM a Petri net can be generated in a similar way.

In order to show that the conformance relation on FSMs is equivalent to the con-

formance relation on sequential Petri nets, we first have to show that executions of
sequential Petri nets can be represented by sequences of output symbols. The second
step of the proof is to show that the weak simulation relation is equivalent to the
equality on output sequences.

Lemma 1: Each execution of strongly connected sequential Petri Nets P starting at a
condition b and according to a set SEQ of sequences of input symbols [P,b,h,SEQ〉
represents a sequence of output symbols.

Proof:
K=(BK,EK,RK,I,O,PCO,PO,ιK,οK)= [P,b,h,SEQ〉 is an execution of a sequential Petri
Net P=(B,E,R,I,O,PCO,PO,ι,ο). Since |PCO|=1, SEQ contains exacly one sequence.
Since P is sequential and ∀ e∈E (|•e|≤1 and |e•|≤1), it is valid that ∀ e∈ EK (|•e|≤1 and
|e•|≤1).Because P is strongly connected, it is valid that ∀ e∈ EK (|•e|=1 and |e•|=1)
Because K is [P,b,h,SEQ〉, it is valid, that ∀ s∈((BK- h(c(b)))∪EK) (|•s|=1 and |•s|=1
and (s,s) ∉RK

+). ∀ s∈ h(c(b)) (|•s|=0 and |•s|=1 and (s,s) ∉RK
+). K describes a se-

quence h(c(b)), e1, b1, e2, b2, e3, b3, e4, The output sequence is
ο(e1), ο(e2), ο(e3), ο(e4),

Lemma 2: For two strongly connected sequential Petri Nets I=(BI,EI,RI,
I,O,PCO,PO,ιI,οI) and S=(BS,ES,RS, I,O,PCO,PO,ιS,οS) the condition bI ∈ BI is
weakly simulating the condition bS ∈ BS if and only if for all SEQ, [I,bI,hI,SEQ〉 and
[S,bS,hS,SEQ〉 are representing the same output sequence.

Proof: “ →”
From Lemma1: [I,bI,hI,SEQ〉 is represented by hI(c(bI)), eI1, bI1, eI2, bI2, eI3, ..., and
[S,bS,hS,SEQ〉 is represented by hS(c(bS)), eS1, bS1, eS2, bS2, eS3, Since bI is weakly
simulating bS for all SEQ [I,bI,hI,SEQ〉 is weakly simulating [S,bS,hS,SEQ〉. Because S
and I are sequential, all possible SEQ contain only one sequence of input symbols.
[I,bI,hI,SEQ〉=(BKi,EKi,RKi,I,O,PCO,PO,ιKi,οKi) and [S,bS,hS,SEQ〉 =(BKs, EKs, RKs, cKs,
I, O, PCO, PO, ιKs, οKs) and it exists an homomorphism h’:[S,bS,hS,SEQ〉
→ [I,bI,hI,SEQ〉 such that h’(EKs)= EKi and ∀ x,x’∈ EKs∪BKs ((x, x’) ∈ RKs → (h(x),
h(x’)) ∈ RKi) and ∀ e∈EKs (οKs(e)= οKi(h(e)) ∧ ιKs(e)= ιKi(h(e))). h([S,bS,SEQ〉) is
represented by h’(hS(c(bS))), h’(eS1), h’(bS1), h’(eS2), h’(bS2), h’(eS3), h’(bS3), h’(eS4),
..... and the output sequence of [I,bI,hI,SEQ〉 is the same as that of [S,bS,hS,SEQ〉

www.manaraa.com

“←”
From Lemma1: [I,bI,hI,SEQ〉 is represented by hI(c(bI)), eI1, bI1, eI2, bI2, eI3,..., and
[S,bS,hS,SEQ〉 is represented by hS(c(bS)), eS1, bS1, eS2, bS2, eS3,... . [I,bI,hI,SEQ〉 =
(BKi,EKi,RKi,I,O,PCO,PO,ιKi,οKi) and [S,bS,hS,SEQ〉 = (BKs,EKs,RKs,cKs, I,O,PCO,PO,ι

Ks,οKs). The output sequences of [I,bI,hI,SEQ〉 and [S,bS,hS,SEQ〉 are the same: ο(eIi)
= ο(eSi). Because I and S are sequential Petri nets, |PCO|=1 and SEQ contains ex-
actly one element seq. That implies that ι(eIi) = ι(eSi). A homomorphism h’:
[S,bS,hS,SEQ〉 → [I,bI, hI,SEQ〉 can be defined as follows: h’(eSi)= eIi, h’(bSi)= bIi,
h’(hS(c(bS)))= hI(c(bI)). This homomorphism defines that [I,bI,hI,SEQ〉 is weak simu-
lating [S,bS,hS,SEQ〉 and bI is weak simulating bS.

Theorem 2: The conformance relation on strongly connected FSMs is the same as
that on strongly connected sequential Petri nets.
Proof: Follows directly from Lemma 2 and Theorem 1.

Thus, the answer to the first question from above is affirmative. For answering the
second question we have to define the global FSM of an extended Petri net. For
communicating finite state machines (CFSM) the Cartesian product of the states is
used to generate a FSM. On this FSM the conformance relation is defined.

Definition 12: The global FSM G(P)=(I,O,S,λ,δ) of an extended strongly connected
Petri Net P = (B,E,R,I,O,PCO,PO,ι,ο) contains the set S of all sets c ⊆ B, such that
(B,E,R,c) is contact free, there exists an event e with •e ⊆ c, and δ(c,i)=c’ and
λ(c,i)=o’ if it exists an event e with •e ⊆ c, e• and c’ are disjoint, c’=(c-•e) ∪ e• and
ι(e)=i and ο(e)=o’.

We demonstrate the difference between the conformance relation on extended
Petri nets and global FSM of extended Petri nets by an example. Figure 5 shows a
specification and an implementation. Both extended Petri-Nets have two PCOs de-
fined by ({i1},{o1}) and ({i2},{o2}). The input and output function is defined by
ι(e)=i1 ο(e)=o1 for e= e1,e2,e3 and ι(e)=i2 ο(e)=o2 for e= e7,e8.
The initial markings of the specification are for condition b1 {b1, b6}, for condition
b2 {b2, b8}, for condition b3 {b3, b10, b6}, for condition b5 {b5, b6, b3}, for condi-
tion b6 {b6, b5, b3}, for condition b8 {b8, b3} and for condition b10 {b10, b3, b6}.

(a) (b)

b1

e1

b2

e3

e2

b3

b6

e8

e7

b8

b5

b10

b11

b1

e1

b2

e3

e2

b3

b6

e8

e7

b8

b5

b10

Fig. 5. Extended Petri net of the specification (a) and of the implementation (b)

www.manaraa.com

The initial markings of the implementation are for condition b1 {b1, b6}, for condi-
tion b2 {b2, b8}, for condition b3 {b3, b10, b6}, for condition b5 {b5, b6,b3, b11},
for condition b6 {b6, b5, b3, b11}, for condition b8 {b8, b3, b11}, for condition b10
{b10, b3, b6} and for condition b11 {b11, b8, b3}.

Thus for each condition b in the specification a condition b’ in the implementation
exists with b=b’ and b’ is weakly simulating b. Also for each condition b’=b1, b2, b3,
b5, b6, b8, b10 a condition b in the specification exists with b=b’ and b’ is weakly
simulating b. Condition b11 is weakly simulation condition b8. The implementation
Petri net conforms to the specification Petri net.

The corresponding global FSMs of the extended Petri nets of Figure 5 are shown in
figure 6.

In state b2b8 in the specification the sequence of input symbols in_seq=i2, i1, i1, i1,
i2, i1 produces the output sequence out_seq=o2, o1, o1, o1, o2, o1. There is no state
in the implementation which will produce out_seq when in_seq is applied. The FSMs
do not conform even though the Petri nets conform. That means conformance of
global FSM of Petri nets is not equivalent to conformance on Petri nets. One reason
for this is the asymmetry of the weak simulation relation on the executions of the
extended Petri nets. A discussion which conformance relation is more “intuitive” as
well as a comparison of the expressiveness of the two notions will be given in a sub-
sequent paper.

e2

b2 b10 b6

e8

e2

e2 e8e7

e7

e1

b3 b10 b6

b3 b5 b6 b11

b3 b8 b11

b2 b8

b2 b5 b6

b1 b6

e8

e2

e2 e7

e7

e1

b3 b10 b6

b3 b5 b6

b3 b8

b2 b8

b2 b5 b6

b1 b6

Fig. 6. Global FSMs of the specification (a) and of the implementation (b) as defined in figure 5.

www.manaraa.com

5 Model Checking and Distributed Test Generation

So far we have assumed that models both for the specification and for the imple-
mentation are given. In this case, conformance checking is a special form of model
checking. In particular, since both specification and implementation are deterministic,
we can use a classical partition refinement algorithm to establish conformance.

Let H0 be the relation consisting of all pairs (bI,bS) ∈ BI × BS. Hi+1 is constructed

from Hi as follows:

(bI,bS) ∈ Hi+1 iff
1. (bI,bS) ∈ Hi , and
2. ∀ eI∈ bI

•
 , eS∈ bS

•
 (ιKi(eI) = ιKs(eS) → οKi(eI) = οKS(eS)) , and

3. ∀ eS∈ bS
•
 ∀ bS

’∈ eS
•
 ∃ eI∈ bI

•
 ∃ bI

’∈ eI
•: (bI

’,bS
’) ∈ Hi

Since we are dealing with finite Petri nets, the iteration must reach a fixed point. Let
H be the relation reached upon stabilization. Then I conforms to S if

1. ∀ bS ∈ BS ∃ bI ∈ BI : (bI,bS) ∈ H, and
2. ∀ bI ∈ BI ∃ bS ∈ BS : (bI,bS) ∈ H.

Often, the internals of the implementation are not accessible in a systems validation
process. In this case, we have to resort to black box testing techniques. In our ap-
proach, each execution of the specification can serve as the basis for the generation of
test cases. We use the following algorithm to generate executions from a given ex-
tended Petri net P:

• Start with an arbitrary condition b and let c(b) be ∪{•e | e∈b•}
• The initial part of the execution is a copy of all conditions in c(b)
• Put a mark on all conditions in c(b)
• Repeat indefinitely

• Choose a maximal set of events which are either enabled in P, or can be en-
abled by putting a token on a condition which is not marked, such that the
inputs of these events contain at most one input from each PCO and PO, re-
spectively.

• Put a mark on all conditions which have received a token, as well as on all
conditions in the pre- and postset of an enabled transition.

• Fire the chosen events in P, and extend the execution by appending a copy of
all chosen events and their postsets to it.

During the execution of the Petri Net the initial marking c(b) is generated on the

fly. Starting with the marking containing all conditions in the preset of the succeeding
events of b, conditions are added when a state is reached in which no event can be
fired. Only conditions of the preset of an event are added such that the event get fire-
able. Each condition can only be added once to the initial state. In comparision to

www.manaraa.com

FSMs, an execution is described by a combination of the input sequence and the
output sequence together with the reached states of the FSM.

Since each execution represents a class of different interleavings, it is sufficient to

generate only a few representatives from it which cover the intended behavior. The
particular interleaving is chosen according to some specific heuristics, e.g., firing all
enabled events always according to some specific ordering. Another alternative is to
map the execution to a TTCN test case description and let the TTCN scheduler do the
linearization of concurrent events.

In general, this technique can reduce the number of test cases by an exponential

factor. If each potential error is preserved by this reduction technique, then the testing
coverage in the specification is the same as that without partial order reduction; i.e.,
the same test termination and measurement criteria can be used.

6 Conclusion and Further Work

We have proposed a conformance relation between specification and implementation
of distributed systems. This relation is based on a local view of the distributed system
which allows to avoid or reduce the state explosion problem. As distributed model we
use an extension of one-safe Petri nets. The conformance relation on extended Petri
nets is based not only on the equivalence between transitions but also on the equiva-
lence between conditions which are local states. The equivalence between conditions
depends only on the structural properties of the Petri net and is independent of any
specific initial marking.

We compared the conformance relation on Petri nets with the conformance relation

on FSMs. The result is that for sequential systems both conformance relations are
equivalent. For distributed systems the conformance relations are not equivalent.

Further work includes a more detailed comparison between both conformance rela-

tions for distributed systems. In particular, we plan to investigate a variant of the
conformance relation on Petri nets using the strong simulation relation and compare it
with the relation on FSMs. Furthermore, we plan to adopt methods for generation of
test to the conformance relation on Petri nets and to define a coverage measure which
determines the extent to which a black box implementation conforms to a specifica-
tion. Finally, we will implement concrete testcases in TTCN-3 for telecommunication
networks. For this, a concrete algorithm for the generation of a module from causal
nets has to be developed. For practical applications in telecommunications, we also
plan to develop methods to handle the different parameters and information elements
sent within the messages across the network and to incorporate these into the genera-
tion of TTCN-3 testcases.

www.manaraa.com

References

[GSM03.02] ETSI: ETSI TS 100 522 Digital cellular telecommunications system (Phase 2+): Network
architecture (GSM 03.02 version 7.1.0 Release 1998): 2000

[SCCP] ITU-T: Recommendations Q.711-Q.714 Specifications of Signalling System No. 7 - Signalling
connection control part: 1996
[GSM04.08] ETSI: ETSI TS 100 940 Digital cellular telecommunications system (Phase 2+); Mobile

radio interface layer 3 specification (3GPP TS 04.08 version 7.17.0 Release 1998): 2002
[MAP] ETSI: ETSI TS 129 002 Digital cellular telecommunications system (Phase 2+) (GSM); Universal

Mobile Telecommunications System (UMTS); Mobile Application Part (MAP) specification (2GPP TS
29.002 version 4.50 Release 4): 2001

[ISUP] ITU-T: Recommendations Q.761-Q.764 Signalling System No. 7 – ISDN user part signalling
procedures: 1999

[TTCN-2] ISO. ISO/IEC 9646-3, Tree and Tabular Combined Notation (TTCN), Second Edition (1997)
[TTCN-3] ETSI: ETSI ES 201 873 Methods for Testing and Specification (MTS); The Tree and Tabular

Combined Notation version 3: 2001
[1999_GSBWL] Vassiliou-Gioles, T., Schieferdecker, I., Born, M., Winkler, M., Li, M.: Configuration and

Execution Support for Distributed Tests. In: Csopaki, G., Dibuz, S., Tarnay, K. (eds): Testing of Com-
municating Systems. Kluwer Academic publishers. Boston, Dordrecht, London (1999) 61-76

[DSS1] ITU-T: Recommendation Q.931 Digital Subscriber Signallingsystem No. 1 (DSS 1) – ISDN
User-Network Interface Layer 3 Specification For Basic Call Control: 1998

[ISUP 2] ITU-T: Recommendation Q.764-Annex H Specification of Signalling System No.7 – ISDN User
Part Signalling Procedures Annex H: State Transition Diagrams: 1995

[SDL] ITU-T: Recommendation Z.100 Languages for Telecommunications Applications – Specification
and Description Language, 1999

[Yao Petrenko Bochmann 1993]Yao, M., Petrenko, A., v. Bochmann, G.: Conformance Testing of Protocol
Machines without Reset. In: Danthine, A., Leduc, G., Wolper, P. (eds): Protocol Specification, Testing
and Verification, XIII.Elsevier Science Publishers B. V. (North-Holland) (1993) 241-253

[Anido Cavalli 95] Anido, R., Cavalli, A.R.: Guaranteeing full fault coverage for UIO-based testing meth-
ods. In: Proceedings of the 8th Int. Workshop on Protocol Test Systems, Evry, France (1995) 221-236

[Lee Yannakakis 1996] Lee, D., Yannakakis, M.: Princliples and Methods of testing Finite State Machines
– A Survey. Proceedings of the IEEE. Vol. 4 (8), 1996, 1090-1123

[Petrenko Ulrich Chapenko 1998] Petrenko, A., Ulrich, A., Chapenko, V. :Using partial-orders for detect-
ing faults in concurrent systems. In: Proceedings of Workshop on Testing of Communicating Systems
(IWTCS’98), Russia, 1998

[Ulrich König 1999] Ulrich, A., König, H.: Architectures for Testing Distributed Systems. In: Csopaki, G.,
Dibuz, S., Tarnay, K. (eds): Testing of Communicating Systems. Kluwer Academic publishers. Boston,
Dordrecht, London (1999) 93-108

[Jard 2001] Jard, C., Principles of Distributed Test Synthesis based on True-Concurrency Models. In:
Schieferdecker, I., König, H., Wolisz, A.: Testing of Communicating Systems XIV. Kluwer Academic
publishers. Boston, Dordrecht, London (2002) 301-316

[Kim Shin Janson Kang 1999] Kim, M., Shin, S.T., Chanson, S. T., Kang, S.: An Enhanced Model for
Testing Asynchronous Communicating Systems. In: Formal Description Techniques and Protocol
Specification, Testing and Verification, 19. IFIP (1999) 337-355

[Ramalingam Das Thulasiraman 95] Ramalingam, T., Das, A., Thulasiraman, K.: Fault detection and diag-
nosis capabilities of test sequence selection methods based on the FSM model. Computer communica-
tions, vol.18(2), 1995,113-122

[Reisig 88] Reisig, W.: Petri Nets. Springer 1988
[Tretmans 96] Test Generation with Inputs, Outputs and Repetitive Quiescence. Software--Concepts and

Tools, 17(3):103-120, 1996

